2y^2-8y+15(y-6)(y-6)=0

Simple and best practice solution for 2y^2-8y+15(y-6)(y-6)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y^2-8y+15(y-6)(y-6)=0 equation:


Simplifying
2y2 + -8y + 15(y + -6)(y + -6) = 0

Reorder the terms:
2y2 + -8y + 15(-6 + y)(y + -6) = 0

Reorder the terms:
2y2 + -8y + 15(-6 + y)(-6 + y) = 0

Multiply (-6 + y) * (-6 + y)
2y2 + -8y + 15(-6(-6 + y) + y(-6 + y)) = 0
2y2 + -8y + 15((-6 * -6 + y * -6) + y(-6 + y)) = 0
2y2 + -8y + 15((36 + -6y) + y(-6 + y)) = 0
2y2 + -8y + 15(36 + -6y + (-6 * y + y * y)) = 0
2y2 + -8y + 15(36 + -6y + (-6y + y2)) = 0

Combine like terms: -6y + -6y = -12y
2y2 + -8y + 15(36 + -12y + y2) = 0
2y2 + -8y + (36 * 15 + -12y * 15 + y2 * 15) = 0
2y2 + -8y + (540 + -180y + 15y2) = 0

Reorder the terms:
540 + -8y + -180y + 2y2 + 15y2 = 0

Combine like terms: -8y + -180y = -188y
540 + -188y + 2y2 + 15y2 = 0

Combine like terms: 2y2 + 15y2 = 17y2
540 + -188y + 17y2 = 0

Solving
540 + -188y + 17y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
17 the coefficient of the squared term: 

Divide each side by '17'.
31.76470588 + -11.05882353y + y2 = 0

Move the constant term to the right:

Add '-31.76470588' to each side of the equation.
31.76470588 + -11.05882353y + -31.76470588 + y2 = 0 + -31.76470588

Reorder the terms:
31.76470588 + -31.76470588 + -11.05882353y + y2 = 0 + -31.76470588

Combine like terms: 31.76470588 + -31.76470588 = 0.00000000
0.00000000 + -11.05882353y + y2 = 0 + -31.76470588
-11.05882353y + y2 = 0 + -31.76470588

Combine like terms: 0 + -31.76470588 = -31.76470588
-11.05882353y + y2 = -31.76470588

The y term is -11.05882353y.  Take half its coefficient (-5.529411765).
Square it (30.57439447) and add it to both sides.

Add '30.57439447' to each side of the equation.
-11.05882353y + 30.57439447 + y2 = -31.76470588 + 30.57439447

Reorder the terms:
30.57439447 + -11.05882353y + y2 = -31.76470588 + 30.57439447

Combine like terms: -31.76470588 + 30.57439447 = -1.19031141
30.57439447 + -11.05882353y + y2 = -1.19031141

Factor a perfect square on the left side:
(y + -5.529411765)(y + -5.529411765) = -1.19031141

Can't calculate square root of the right side.

The solution to this equation could not be determined.

See similar equations:

| t=3k+3u | | (2x-1)(x+2)=3 | | (x-5)+6=9 | | -3p+8=5-(10p+2) | | (u-1)(u-1)=0 | | 2(4-1)+t=8-t | | u^2-2u+2+2u^2-5u-9=0 | | 5y^3+10y^2-30y-60=0 | | (2x-3)=-13 | | (2x+16)=6 | | 8(2x-6)=2(8x+2) | | 6x^3-30x=0 | | 6+14y-5=9y+55-4y | | (2x-3)=13 | | u-1+u-1+2u^2-5u-9=0 | | 0.2m=3 | | 2x-3=10+21 | | 3x+4x+5x=180 | | 2(x+1)=3(x-2) | | y+17=23 | | 2y^2-13y+6+y-6+y-6=0 | | y-17=23 | | -3x^2+6x+4=0 | | x(4)=8 | | -u^2-6u+6+2u^2-3u+11=0 | | 3(t-1)=9+1 | | -2x^2+12=2 | | 6x+7-20=6x | | X^2+4x^2-24x=0 | | 2u^2-3u+11-u^2-6u+6=0 | | 2(x+4)+-5=2x+13 | | 2(x+4)-5=2x |

Equations solver categories